Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Butter fraud is a serious problem that affects public health and economic interests. Technological authentication is unreliable because the composition of fatty acids depends on the season, the breed of cows, their diet, etc. As a result, a deviation detected does not necessarily mean an adulteration. Updated State Standard GOST R 52253-2004 (2025) specifies butter and butter paste from the milk of farm animals. It gives a detailed authentication procedure for the fatty phase in butter with non-dairy fats. This article introduces an algorithm for detecting dairy fraud by chromatography. The research featured samples of milk fat, animal and vegetable fats, and samples with 50 and 80% of non-dairy fat. The sterol and fatty acid profile was determined for each sample. The cholesterol content in the fat phase proved to correlate with the milk fat content. The milk fat samples and the samples with beef fat hadthe sterol fraction that consisted mostly of cholesterol. The abundance of cholesterol did not guarantee authenticity, so the fatty acid composition in the fat phase had to be measured. Replacing milk fat with beef fat reduced the content of saturated fatty acids, e.g., butyric, lauric, myristic, and palmitic acids. Vegetable fats were rich in unsaturated fatty acids, e.g., linoleic and oleic acids. Chromatographic methods were able to identify adulterated dairy products based on their sterol and fatty acid composition.
adulteration, sterol composition, fatty acid composition, milk fat, milk fat substitutes, beef fat, spread
1. Topnikova, E. V. Vliyanie racionov kormleniya na zhirno-kislotnyy sostav moloka / E. V. Topnikova [i dr.] // Molochnaya promyshlennost'. 2021. № 12. S. 56–59. https://elibrary.ru/hhysrc
2. Haritonov, E. L. Kormovye i metabolicheskie faktory formirovaniya zhirnokislotnogo sostava moloka u korov / E. L. Haritonov, D. E. Panyushkin // Problemy biologii produktivnyh zhivotnyh. 2016. № 2. S. 76–106. https://elibrary.ru/waacbj
3. Falade, A. O. Consumption of thermally oxidized palm oil diets alters biochemical indices in rats / Falade A. O. [et al.] // Beni-Suef University Journal of Basic and Applied Sciences. 2015. Vol. 4(2). R. 150–156. https://doi.org/10.1016/j.bjbas.2015.05.009
4. Mba, O. I. Palm oil: Processing, characterization and utilization in the food industry–A review / O. I. Mba, M. J. Dumont, M. Ngadi // Food bioscience. 2015. Vol. 10. P. 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
5. Roy, M. Electronic nose for detection of food adulteration: A review / M. Roy, B. K. Yadav // Journal of Food Science and Technology. 2022. Vol. 59(3). P. 1–13. https://doi.org/10.1007/s13197-021-05057-w
6. Mahanti, N. K. Enhancing food authentication through E-nose and E-tongue technologies: Current trends and future directions / N. K. Mahanti [et al.] // Trends in Food Science & Technology. 2024. Vol. 150. 104574. https://doi.org/10.1016/j.tifs.2024.104574
7. Saranov, I. A. Metody GZhH, DSK i IK-spektroskopii v izuchenii korov'ego molochnogo zhira / I. A. Saranov [i dr.] // Sorbcionnye i hromatograficheskie processy. 2024. T. 24. № 3. S. 335–352. https://doi.org/10.17308/sorpchrom.2024.24/12236; https://elibrary.ru/ahjtum
8. Kanwal, N. Analytical approaches for the determination of adulterated animal fats and vegetable oils in food and non-food samples / N. Kanwal, S. G. Musharraf // Food Chemistry. 2024. Vol. 460. 140786. https://doi.org/10.1016/j.foodchem.2024.140786
9. Bol'shakov, D. S. Opredelenie fal'sifikacii molochnoy produkcii i rastitel'nyh masel po zhirnokislotnomu sostavu / D. S. Bol'shakov, D. V. Yudina, T. B. Nikeshina // Veterinariya segodnya. 2016. № 2(17). S. 20–30. https://elibrary.ru/wwrlvl
10. Zheng, Yu. Current analytical strategies for the determination of phytosterols in vegetable oils / Yu. Zheng [et al.] // Journal of Food Composition and Analysis. 2024. Vol. 131. 106279. https://doi.org/10.1016/j.jfca.2024.106279
11. Kosincev, V. L. Aktual'noe sostoyanie problemy fal'sifikacii moloka i molochnyh produktov v RF posredstvom podmeny zhirovoy sostavlyayuschey moloka / V. L. Kosincev // BIO. 2021. № 12(255). S. 20–23. https://elibrary.ru/pjktwz
12. Yurova, E. A. Vyyavlenie fal'sifikacii zhirovoy fazy molochnoy produkcii / E. A. Yurova, T. V. Kobzeva, N. A. Zhizhin // Kontrol' kachestva produkcii. 2018. № 1. S. 34–39. https://elibrary.ru/ykupnw
13. Bai, G. Phytosterols in edible oil: Distribution, analysis and variation during processing / G. Bai, C. Ma, X. Chen // Grain & Oil Science and Technology. 2021. №4(1), P. 33-44. https://doi.org/10.1016/j.gaost.2020.12.003
14. Wang, X. Triglyceride and fatty acid composition of ruminants milk, human milk, and infant formulae / X. Wang [et al.] // Journal of Food Composition and Analysis. 2022. Vol. 106. 104327. https://doi.org/10.1016/j.jfca.2021.104327
15. Zhou, Q. Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time-of-flight mass spectrometry / Q. Zhou [et al.] // Food chemistry. 2014. Vol. 143. R. 199–204. https://doi.org/10.1016/j.foodchem.2013.07.114
16. Wu, Y. Integrated analysis of fatty acid, sterol and tocopherol components of seed oils obtained from four varieties of industrial and environmental protection crops / Y. Wu [et al.] // Industrial Crops and Products. 2020. Vol. 154. 112655. https://doi.org/10.1016/j.indcrop.2020.112655
17. Pirogova, E. N. Zhirno-kislotnyy sostav slivochnogo masla – odin iz kriteriev dlya opredeleniya ego fal'sifikacii govyazh'im zhirom / E. N. Pirogova [i dr.] // Syrodelie i maslodelie. 2020. № 6. S. 54–56. https://doi.org/10.31515/2073-4018-2020-6-54-56; https://elibrary.ru/gkodjb



