Kaliningrad, Russian Federation
employee
Kemerovo, Russian Federation
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
Kaliningrad, Russian Federation
Plant extracts are a source of new drugs and alternative therapies. This article describes the antioxidant and antibacterial properties of aqueous methanol extracts of Eastern Baltic Glycyrrhiza glabra L., Salix alba L., and Echium vulgare L., as well as their effects on the viability of human blood cells. The aerial parts of the plants were harvested in the Kaliningrad Region, Russia. The phytochemical composition of their plant extracts was studied by the method of high-performance liquid chromatography (HPLC). The bioactive profile and antibacterial action were described using the methods of spectrophotometry and disk diffusion, respectively. Cytotoxicity of extracts was studied by WST-1 colorimetric analysis. The extracts proved to contain phenolic compounds. The antioxidant activity of the S. alba extracts was four times higher than that of G. glabra and more than seven times higher than that of E. vulgare. The G. glabra extracts were active against both Gram-positive and Gram-negative bacteria while the E. vulgare extract samples inhibited Gram-negative bacteria only. As for cytotoxicity, S. alba and E. vulgare were able to reduce the viability of human T-lymphoblastic leukemia (Jurkat) cells and human blood mononuclear cells. The extracts of G. glabra, S. alba, and E. vulgare demonstrated good prospects for biomedicine. Further detailed research may result in their eventual introduction into official medicine as potent therapeutic and preventive agents.
Plants, Glycyrrhiza glabra, Salix alba, Echium vulgare, aqueous methanol extract, free radicals
1. Albahri G, Badran A, Abdel Baki Z, Alame M, Hijazi A, et al. Potential anti-tumorigenic properties of diverse medicinal plants against the majority of common types of cancer. Pharmaceuticals. 2024;17(5):574. https://doi.org/10.3390/ph17050574 EDN: https://elibrary.ru/MDGZDB
2. Martemucci G, Costagliola C, Mariano M, d’andrea L, Napolitano P, et al. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022;2(2):48–78. https://doi.org/10.3390/oxygen2020006 EDN: https://elibrary.ru/XGIKXI
3. Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Molecular cancer. 2023;22(1):169. https://doi.org/10.1186/s12943-023-01865-0 EDN: https://elibrary.ru/TRQMRC
4. Pshenichnikov S, Omelyanchik A, Efremova M, Lunova M, Gazatova N, et al. Control of oxidative stress in Jurkat cells as a model of leukemia treatment. Journal of Magnetism and Magnetic Materials. 2021;523:167623. https://doi.org/10.1016/j.jmmm.2020.167623 EDN: https://elibrary.ru/TCCIZU
5. Kleiveland CR. Peripheral blood mononuclear cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, editors. The Impact of Food Bioactives on Health. NY: Springer; 2015. pp. 161–167. https://doi.org/10.1007/978-3-319-16104-4_15
6. Hameete BC, Plösch T, Hogenkamp A, Groenink L. A systematic review and risk of bias analysis of in vitro studies on trophoblast response to immunological triggers Placenta. 2024;166:164–175. https://doi.org/10.1016/j.placenta.2024.10.010 EDN: https://elibrary.ru/OHFDSL
7. Sorrenti V, Burò I, Consoli V, Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. International Journal of Molecular Sciences. 2023;24(3):2019. https://doi.org/10.3390/ijms24032019 EDN: https://elibrary.ru/UCUFLZ
8. Chatterjee N, Komaravolu RK, Durant CP, Wu R, McSkimming C, et al. Single cell high dimensional analysis of human peripheral blood mononuclear cells reveals unique intermediate monocyte subsets associated with sex differences in coronary artery disease. International Journal of Molecular Sciences. 2024;25(5):2894. https://doi.org/10.3390/ijms25052894 EDN: https://elibrary.ru/NUWCAU
9. Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: Main achievements and challenges. Cellular & Molecular Immunology. 2021;18(4):805–828. https://doi.org/10.1038/s41423-020-00530-6
10. Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy research. 2018;32(12):2323–2339. https://doi.org/10.1002/ptr.6178 EDN: https://elibrary.ru/TMNDMH
11. Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants. 2021;10(12):2751. https://doi.org/10.3390/plants10122751 EDN: https://elibrary.ru/AEMVGZ
12. Frolova OO, Kompantseva EV, Dementieva TM. Biologically active substances of plants of the genus Willow (Salix L.). Pharmacy & Pharmacology. 2016;4(2):41–59. (In Russ.) https://doi.org/10.19163/2307-9266-2016-4-2(15)-41-59 EDN: https://elibrary.ru/WCNPDJ
13. Jin J, Boersch M, Nagarajan A, Davey AK, Zunk M. Antioxidant properties and reported ethnomedicinal use of the genus Echium (Boraginaceae). Antioxidants. 2020;9(8):722. https://doi.org/10.3390/antiox9080722 EDN: https://elibrary.ru/FIHVHL
14. Swamy MK, Patra JK, Rudramurthy GR. Medicinal plants: Chemistry, pharmacology, and therapeutic applications. FL: CRC Press; 2019. 256 p. DOI: https://doi.org/10.1201/9780429259968
15. Ng CX, Affendi MM, Chong PP, Lee SH. The potential of plant-derived extracts and compounds to augment anticancer effects of chemotherapeutic drugs. Nutrition and Cancer. 2022;74(9):3058–3076. https://doi.org/10.1080/01635581.2022.2069274 EDN: https://elibrary.ru/BZSNMV
16. Wainwright CL, Teixeira MM, Adelson DL, Braga FC, Buenz EJ, et al. Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review. Pharmacological Research. 2022;177:106076. https://doi.org/10.1016/j.phrs.2022.106076 EDN: https://elibrary.ru/DNOHSI
17. Giacometti J, Kovačević DB, Putnik P, Gabrić D, Bilušić T, et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International. 2018; 113:245–262. https://doi.org/10.1016/j.foodres.2018.06.036 EDN: https://elibrary.ru/VIOQIM
18. Ligor M, Ratiu IA, Kiełbasa A, Al‐Suod H, Buszewski B. Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis. 2018;39(15):1860–1874. https://doi.org/10.1002/elps.201700431 EDN: https://elibrary.ru/VGZEKJ
19. Pintać D, Majkić T, Torović L, Orčić D, Beara I, et al. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products. 2018;111:379–390. https://doi.org/10.1016/j.indcrop.2017.10.038
20. Zengin G, Stefanucci A, Rodrigues MJ, Mollica A, Custodio L, et al. Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. Journal of Pharmaceutical and Biomedical Analysis. 2019;162:225–233. https://doi.org/10.1016/j.jpba.2018.09.035
21. Lu Z, Mei G, Zhong F, Gu Y, Xi J, et al. Iridoids and lignans from Valeriana officinalis and their bioactivities. Phytochemistry. 2025;229:114311. https://doi.org/10.1016/j.phytochem.2024.114311 EDN: https://elibrary.ru/BGCLYJ
22. Sukhikh S, Ivanova S, Babich O, Larina V, Krol O, et al. Antimicrobial screening and fungicidal properties of Eucalýptus globulus ultrasonic extracts. Plants. 2022;11(11):1441. https://doi.org/10.3390/plants11111441 EDN: https://elibrary.ru/XHUUXE
23. Villalva M, Macphail S, Li Y, Caruana B. Isolating human peripheral blood mononuclear cells from buffy coats via high throughput immunomagnetic bead separation. Journal of Visualized Experiment. 2024;209:66887. https://doi.org/10.3791/66887 EDN: https://elibrary.ru/OFOOAS
24. Invitrogen. Thermo Fisher Scientific Inc. Countess II FL automated cell counter. User Guide. 2019. Pub. No. MAN0010644 E.0. 82 p.
25. Prilepsky AYu, Drozdov AS, Bogatyrev VA, Staroverov SA. Methods of working with cell cultures and determination of toxicity of nanomaterials. ITMO. Saint Petersburg, 2019; 43 p. (In Russ.)
26. Sukhikh S, Ivanova S, Skrypnik L, Bakhtiyarova A, Larina V, et al. Study of the antioxidant properties of Filipendula ulmaria and Alnus glutinosa. Plants. 2022;11(18):2415. https://doi.org/10.3390/plants11182415 EDN: https://elibrary.ru/KRZQHE
27. Babich O, Ivanova S, Ulrikh E, Popov A, Larina V, et al. Study of the chemical composition and biologically active properties of Glycyrrhiza glabra extracts. Life. 2022;12(11):1772. https://doi.org/10.3390/life12111772 EDN: https://elibrary.ru/UPXLUS
28. Frolova OO, Kompantseva EV, Dementieva TM. Biologically active substances of plants from Salix L. Genus. Pharmacy & Pharmacology. 2016;4(2):41–59. (In Russ.) https://doi.org/10.19163/2307-9266-2016-4-2(15)-41-59 EDN: https://elibrary.ru/WCNPDJ
29. Julkunen-Tiitto R. Phenolic constituents of Salix: A chemotaxonomic survey of further Finnish species. Phytochemistry. 1989;28(8):2115–2125. https://doi.org/10.1016/S0031-9422(00)97930-5
30. Kompantsev VA. Development of treatment, preventive agents on the basis of polyphenols and polysaccharides: Author abstract for a thesis of Candidate of Pharmaceutical Sciences. Pyatigorsk, 1993; 48 p. (In Russ.)
31. Nasudari AA. Flavonoids of essential fractions of leaves of Salix L. species. Plant Resources. 1987;4:590–597.
32. Zuzuk BM, Kutsik RV, Nedostup AT, Khomenets IZ, Permyakov VV. Salix alba L. (Analytic review). Phytochemistry. 2005;24:2836–2843.
33. Petruk AA. Phenolic compounds of some representatives of the genus Salix (Salicaceae) of Asian Russia. Chemistry of Plant Raw Materials. 2011;(4):181–185. EDN: https://elibrary.ru/OOIZRV
34. Kompantsev VA. Chemical investigation for phenolic glycosides of some Salix species of the North Caucasus: Author abstract for a thesis of Candidate of Pharmaceutical Sciences. Pyatigorsk, 1970; 24 p. (In Russ.)
35. Obolentseva GV. Pharmacological investigation of antiulcer action of some flavonoids: Author abstract for a thesis of Candidate of Medical Sciences. Kharkov, 1964; 23 p. (In Russ.)
36. Stefanucci A, Scioli G, Marinaccio L, Zengin G, Locatelli M, et al. A comparative study on phytochemical fingerprint of two diverse Phaseolus vulgaris var. Tondino del Tavo and Cannellino bio extracts. Antioxidants. 2022;11(8):1474. https://doi.org/10.3390/antiox11081474 EDN: https://elibrary.ru/BXPJVN
37. Vera J, Herrera W, Hermosilla E, Díaz M, Parada J, et al. Antioxidant activity as an indicator of the efficiency of plant extract-mediated synthesis of zinc oxide nanoparticles. Antioxidants. 2023;12(4):784. https://doi.org/10.3390/antiox12040784 EDN: https://elibrary.ru/SXRFQG
38. Enayat S, Banerjee S. Comparative antioxidant activity of extracts from leaves, bark and catkins of Salix aegyptiaca sp. Food Chemistry. 2009;116(1):23–28. https://doi.org/10.1016/j.foodchem.2009.01.092 EDN: https://elibrary.ru/KYYBOW
39. Gligorić E, Igić R, Čonić BS, Kladar N, Teofilović B, et al. Chemical profiling and biological activities of “green” extracts of willow species (Salix L., Salicaceae): Experimental and chemometric approaches. Sustainable Chemistry and Pharmacy. 2023;32:100981. https://doi.org/10.1016/j.scp.2023.100981 EDN: https://elibrary.ru/UUUTIT
40. Gligorić E, Igić R, Suvajdžić L, Grujić-Letić N. Species of the genus Salix L.: Biochemical screening and molecular docking approach to potential acetylcholinesterase inhibitors. Applied Sciences. 2019;9(9):1842. https://doi.org/10.3390/app9091842
41. Jeffers MD. Tannins as anti-inflammatory agents. Faculty of Miami University in partial fulfillment of the requirements for the degree of Masters of Science. Miami: University Oxford, Ohio; 2006. pp. 1–11
42. Gligorić E, Igić R, Teofilović B, Grujić-Letić N. Phytochemical screening of ultrasonic extracts of Salix species and molecular docking study of Salix-derived bioactive compounds targeting pro-inflammatory cytokines. International Journal of Molecular Sciences. 2023;24(14):11848. https://doi.org/10.3390/ijms241411848 EDN: https://elibrary.ru/ZMVTRA
43. Kapusterynska AR, Hamada VR, Krvavych AS, et al. Investigation of the extract’s composition of Viper’s bugloss (Echium vulgare). Ukrainica bioorganica acta. 2020;15(1):42–46. https://doi.org/10.15407/bioorganica2020.01.042 EDN: https://elibrary.ru/TDXCFK
44. Kuruüzüm-Uz A, Güvenalp Z, Ströch K, Demirezer LÖ, Zeeck A. Phytochemical and antimicrobial investigation of Echium vulgare growing in Turkey. Biochemical Systematics and Ecology. 2004;32(9):833–836. https://doi.org/10.1016/j.bse.2003.12.001
45. Rammal H, Farhan H, Hijazi A, Bassal A, Kobeissy A, et al. Phytochemical screening and antioxidant activity of Centranthus longiflorus L. Journal of Natural Product and Plant Resources. 2013;3(3):29–36.
46. Wong CC, Li HB, Cheng KW, Chen F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry. 2006;97(4):705–711. https://doi.org/10.1016/j.foodchem.2005.05.049
47. Maistro EL, Terrazzas PM, Perazzo FF, O’Neill de Mascarenhas Gaivão I, Sawaya ACHF, et al. Salix alba (white willow) medicinal plant presents genotoxic effects in human cultured leukocytes. Journal of Toxicology and Environmental Health, Part A. 2019;82(23–24):1223–1234. https://doi.org/10.1080/15287394.2019.1711476
48. Somaida A, Tariq I, Ambreen G, Abdelsalam AM, Ayoub AM, et al. Potent cytotoxicity of four cameroonian plant extracts on different cancer cell lines. Pharmaceuticals. 2020;13(11):357. https://doi.org/10.3390/ph13110357 EDN: https://elibrary.ru/SRLTUR
49. Farahani M, Branch Q, Azad I. Antiviral effect assay of aqueous extract of Echium amoenum L. against HSV-1. Zahedan Journal of Research in Medical Sciences. 2013;15(8):46–48.
50. Alsanie WF, El-Hallous EI, Dessoky ES, Ismail IA. Viper’s bugloss (Echium vulgare L.) extract as a natural antioxidant and its effect on hyperlipidemia. International Journal of Pharmaceutical and Phytopharmacological Research. 2018;8(1):81–89.
51. Anderson KJ, Teuber SS, Gobeille A, Cremin P, Waterhouse AL, et al. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. The Journal of Nutrition. 2001;131(11):2837–2842. https://doi.org/10.1093/jn/131.11.2837
52. Aliyazıcıoglu R, Sahin H, Erturk O, et al. Properties of phenolic composition and biological activity of propolis from Turkey. International Journal of Food Properties. 2013;16(2):277–287. https://doi.org/10.1080/10942912.2010.551312
53. Siddique NA, Mujeeb M, Najmi AK, Khan HN, Farooqi H. WITHDRAWN: Evaluation of antioxidant activity, quantitative estimation of phenols and flavonoids in different parts of Aegle marmelos. Journal of Saudi Chemical Society. 2010;4:1–5. https://doi.org/10.1016/j.jscs.2010.10.005
54. Mhamdi B, Wannes WA, Sriti J, Jellali I, Ksouri R, et al. Effect of harvesting time on phenolic compounds and antiradical scavenging activity of Borago officinalis seed extracts. Industrial Crops and Products. 2010;31(1):e1–e4. https://doi.org/10.1016/j.indcrop.2009.07.002
55. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular mechanisms of mutagenesis. 2005;579(1–2):200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
56. Abed A, Vaseghi G, Jafari E, Fattahian E, Babhadiashar N, et al. Echium Amoenum Fisch. Et Mey: A review on its pharmacological and medicinal properties. Asian Journal of Medical and Pharmaceutical Researches. 2014;4(1):21–23.
57. Asghari B, Mafakheri S, Zarrabi MM, Erdem SA, Orhan IE, et al. Therapeutic target enzymes inhibitory potential, antioxidant activity, and rosmarinic acid content of Echium amoenum. South African Journal of Botany. 2019;120:191–197. https://doi.org/10.1016/j.sajb.2018.05.017
58. Noroozpour Dailami K, Azadbakht M, Lashgari M, Rashidi Z. Prevention of selenite-induced cataractogenesis by hydroalchoholic extract of Echium amoenum: An experimental evaluation of the Iranian traditional eye medication. Pharmaceutical and Biomedical Research. 2015;1(4):40–47. http://dx.doi.org/10.18869/acadpub.pbr.1.4.40
59. Chaouche TM, Haddouchi F, Ksouri R, Atik-Bekkara F. Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. Journal of the Chinese Medical Association. 2014;77(6):302–307. https://doi.org/10.1016/j.jcma.2014.01.009
60. Kefi S, Essid R, Mkadmini K, Kefi A, Haddada FM, et al. Phytochemical investigation and biological activities of Echium arenarium (Guss) extracts. Microbial Pathogenesis. 2018;118:202–210. https://doi.org/10.1016/j.micpath.2018.02.050
61. Nićiforović N, Mihailović V, Mašković P, Solujić S, Stojković A, et al. Antioxidant activity of selected plant species; potential new sources of natural antioxidants. Food and Chemical Toxicology. 2010;48(11):3125–3130. https://doi.org/10.1016/j.fct.2010.08.007
62. Hashemi Z, Ebrahimzadeh MA, Khalili M. Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Tropical Journal of Pharmaceutical Research. 2019;18(7):1443–1448. https://doi.org/10.4314/tjpr.v18i7.11 EDN: https://elibrary.ru/LNIWAX
63. Dresler S, Wójciak-Kosior M, Sowa I, Stanisławski G, Bany I, et al. Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations. Plant Physiology and Biochemistry. 2017;115:380–389. https://doi.org/10.1016/j.plaphy.2017.04.016 EDN: https://elibrary.ru/YZUZUP
64. Tahmouzi S. Extraction, antioxidant and antilisterial activities of polysaccharides from the flower of viper’s bugloss. International Journal of Biological Macromolecules. 2014;69:523–531. https://doi.org/10.1016/j.ijbiomac.2014.06.008
65. Abbaszadeh S, Rajabian T, Taghizadeh M. Antioxidant activity, phenolic and flavonoid contents of Echium species from different geographical locations of Iran. Journal of Medicinal Plants and By-products. 2013;2(1):23–31. https://doi.org/10.22092/jmpb.2013.108487
66. Eruygur N, Yilmaz G, Üstün O. Analgesic and antioxidant activity of some Echium species wild growing in Turkey. Fabad Journal of Pharmaceutical Sciences. 2012;37(3):151–159.
67. Vukajlović F, Pešić S, Tanasković S, Predojević DZ, Gvozdenac S, et al. Efficacy of Echium spp. water extracts as post-harvest grain protectants against Plodia interpunctella. Romanian Biotechnological Letters. 2019;24(5):761–769. https://doi.org/10.25083/rbl/24.5/761.769
68. Dang H, Zhang T, Wang Z, Li G, Zhao W, et al. Differences in the endophytic fungal community and effective ingredients in root of three Glycyrrhiza species in Xinjiang, China. PeerJ. 2021;9:e11047. https://doi.org/10.7717/peerj.11047 EDN: https://elibrary.ru/YDJJDW
69. Sharma V, Katiyar A, Agrawal RC. Glycyrrhiza glabra: Chemistry and pharmacological activity. In: Mérillon J-M, Ramawat KG, editors. Sweeteners. NY: Springer; 2018. pp. 87–100. https://doi.org/10.1007/978-3-319-27027-2_21 EDN: https://elibrary.ru/CCNYHL
70. Semenescu I, Avram S, Similie D, Minda D, et al. Phytochemical, antioxidant, antimicrobial and safety profile of Glycyrrhiza glabra L. extract obtained from Romania. Plants. 2024;13(23):3265. https://doi.org/10.3390/plants13233265 EDN: https://elibrary.ru/TOEVBC
71. Astaf’eva OV, Sukhenko LT. Comparative analysis of antibacterial properties and chemical composition of Glycyrrhiza glabra L. from Astrakhan region (Russia) and Calabria region (Italy). Bulletin of Experimental Biology and Medicine. 2014;156:829–832. https://doi.org/10.1007/s10517-014-2462-8 EDN: https://elibrary.ru/UGNFZF
72. Chandra JH, Gunasekaran H. Screening of phytochemical, antimicrobial and antioxidant activity of Glycyrrhiz glabra root extract. Journal of Environmental Biology. 2017;38(1):161–165. https://doi.org/10.22438/jeb/38/1/MRN-441
73. Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, et al. Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia. 2002;73(6):536–539. https://doi.org/10.1016/S0367-326X(02)00168-5
74. Quintana SE, Cueva C, Villanueva-Bermejo D, Moreno-Arribas MV, Fornari T, et al. Antioxidant and antimicrobial assessment of licorice supercritical extracts. Industrial Crops and Products. 2019;139:111496. https://doi.org/10.1016/j.indcrop.2019.111496 EDN: https://elibrary.ru/ZQXVMK
75. Yurchyshyn OI, Rusko HV, Kutsyk RV. Synergistic effects of ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Annals of Mechnikov Institute. 2017;3:71–79. https://doi.org/10.5281/zenodo.1000150




