Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Moscow, Russian Federation
Dairy products may change their initial composition during storage and transportation. Microbial metabolism affects their sensory properties and reduces their shelf life. The article reviews the current technology and research aimed at increasing the shelf life of dairy products. The study included a comparative analysis of traditional dairy processing methods, such as heat treatment and pasteurization, as well as such innovative technologies as hydrostatic pressure, cold plasma, and pulsed electric fields. Conventional dairy processing methods and innovative technological solutions have various advantages and disadvantages. The storage stability of dairy products depends not only on the processing method but also on the additives, preservatives, bacteriocins, starter cultures, and packaging materials. Additives and preservatives increase the shelf life of fermented dairy products while bacteriocins and protective starter cultures improve the quality, extend the shelf life, and increase the competitiveness of domestic producers. Novel packaging materials preserve the quality of dairy products for a long time. Starter microflora also affects the shelf life of dairy products. Starters with low post-fermentative activity inhibit acid formation during production. The most urgent task that the national dairy industry has to solve is developing its own concentrated bacterial starters for fermented dairy products with low post-fermentation activity. The data obtained can be used to prevent and regulate post-fermentative processes in dairy production.
Starters, fermented dairy products, shelf life, shelf-life extension, post-fermentative activity
1. Guan, Y. Post-acidification of fermented milk and its molecular regulatory mechanism / Y. Guan [et al.] // International Journal of Food Microbiology. 2024. Vol. 426. 110920. https://doi.org/10.1016/j.ijfoodmicro.2024.110920
2. Gudkov, A. V. Syrodelie: tehnologicheskie i fiziko-himicheskie aspekty / S. A. Gudkov. – M.: DeLi print, 2003. – 800 s.
3. Deshwal, G. K. Review on factors affecting and control of post-acidification in yoghurt and related products / G. K. Deshwal [et al.] // Trends in Food Science & Technology. 2021. Vol. 109. P. 499–512. https://doi.org/10.1016/j.tifs.2021.01.057
4. Shaker, R. R. Rheological properties of plain yogurt during coagulation process: impact of fat content and preheat treatment of milk / R. R. Shaker, R. Y. Jumah, B. Abu-Jdayil // Journal of Food Engineering. 2000. Vol. 44(3). P. 175–180. https://elibrary.ru/aesast
5. Zarickaya, V. V. Mikrobiologiya moloka i molochnyh produktov / V. V. Zarickaya Yu. I. Derzhapol'skaya. – Blagoveschensk: Dal'GAU, 2017. – 89 s. https://elibrary.ru/jypbmz
6. Tamim, A. Y. Yogurt i drugie kislomolochnye produkty / A. Y. Tamim, R. K. Robinson. – SPb.: Professiya, 2003.– 661 s.
7. Oliveria, M. N. Effect of milk suplementation and culture on acidification, textural properties and microbiological and microbiological stability of fermented milks containing probiotic bacteria / International Dairy Journal. 2001. Vol. 11(11–12). P. 935–942yu https://doi.org/10.1016/S0958-6946(01)00142-X
8. Mahdian, E. Evaluation the Effect of Milk Total Solids on the Relationship Between Growth and Activity of Starter Cultures and Quality of Concentrated Yoghurt / E. Mahdian, M. Tehrani // American-Eurasian Journal of Agricultural & Environmental Sciences. 2007. Vol. 2(5). P. 587–592.
9. Wilbey, R. A. Heat treatment of foods. Principles of Pasteurization / R. A. Wilbey // Encyclopedia of Food Microbiology. Ed by C. A. Batt, M. L. Tortorello. – Academic Pres, 2014. P. 125-155. https://doi.org/10.1016/B978-0-12-384730-0.00159-2
10. Burak, L. Ch. Sovremennye metody konservirovaniya, primenyaemye v pischevoy promyshlennosti. Obzor / L. Ch. Burak // The Scientific Heritage. 2022. № 89(89). S. 106–124. https://doi.org/10.5281/zenodo.6575888; https://elibrary.ru/clhmwh
11. Heinz, V. Food preservation by high pressure / V. Heinz, R. Buckow // Journal fur Verbraucherschutz und Lebensmittelsicherheit. 2010. Vol. 5(1). P. 73–81. https://doi.org/10.1007/s00003-009-0311-x
12. Chelombit'ko, M. A. Primenenie tehnologiy neteplovoy obrabotki v pischevoy promyshlennosti / M. A. Chelombit'ko. – Innovacionnye processy v pischevyh tehnologiyah: nauka i praktika : Materialy Mezhdunarodnoy nauchno-prakticheskoy konferencii. – FGBOU Federal'nyy nauchnyy centr pischevyh sistem im. V. M. Gorbatova RAN, 2019. – S. 388–395. https://elibrary.ru/tpaclf
13. García, D. Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated / D. García [et al.] // International Journal of Food Microbiology. 2007. Vol. 113(2). P. 219–227. https://doi.org/10.1016/j.ijfoodmicro.2006.07.007
14. Hui, Y. H. Handbook of Food Science, Technology and Engineering / Y. H. Hui, F. Sherkat. – Boca Raton, FL: CRC Press, 2010. https://doi.org/10.1201/b15995
15. Arakelyan, A. G. Analiz celesoobraznosti oblucheniya produktov pitaniya / A. G. Arakelyan // Nauchnoe obrazovanie. 2020. № 3(8). S. 204–206. https://elibrary.ru/yvmoyk
16. Oumer, A. The effects of cultivating lactic starter cultures with bacteriocin-producing lactic acid bacteria/ A. Oumer [et al.] // Journal of Food Protection. 2001. Vol. 64(1). P. 81–86. https://doi.org/10.4315/0362-028X-64.1.81
17. Kelyashova, Yu. Opyt primeneniya zaschitnyh kul'tur v proizvodstve polutverdyh syrov / Yu. Kelyashova // Syrodelie i maslodelie.2017. № 4. S. 38–39. https://elibrary.ru/zpsbvj
18. Sviridenko, G. M. Ispol'zovanie zaschitnyh kul'tur. Teoreticheskie aspekty / G. M. Sviridenko, N. P. Sorokina // Molochnaya promyshlennost'. 2018. № 8. S. 25–28. https://elibrary.ru/uvdfge
19. Daly. C. Technological and health benefits of dairy starter cultures / C. Daly [et al.] // International Dairy Journal. 1998. Vol. 8(3). P. 195–205. https://doi.org/10.1016/S0958-6946(98)00042-9
20. Hutkins, R. W. Metabolism of Starter Cultures / R. W. Hutkins // Applied Dairy Microbiology. ed. by E. H. Marth, J. L. Steele. – N. Y.: Marcel Dekker, 2001. – P. 207–241.
21. Bezie, A. The role of starter culture and enzymes/rennet for fermented dairy products manufacture - a review / A. Bezie, H. Regasa // Nutrition and Food Science International Journal. 2019. Vol. 9. P. 21–27.
22. Nicosia, F. D. Technological characterization of lactic acid bacteria strains for potential use in cheese manufacture / F. D. Nicosia [et al.] // Foods. 2023. Vol. 12(6). 1154. https://doi.org/10.3390/foods12061154
23. Vinicius, D. M. A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry / D. M. Vinicius [et al.] // Food reviews international. 2020. Vol. 36(2). P. 135–167. https://doi.org/10.1080/87559129.2019.1630636
24. Derkx, P. M. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology / P. M. Derkx [et al.] // Microbial Cell Factories. 2014. Vol. 13(1). P. 1–13. https://doi.org/10.1186/1475-2859-13-s1-s5
25. Pedersen, M. B. The long and winding road from the research laboratory to industrial applications of lactic acid bacteria / M. B. Pedersen [et al.] // FEMS Microbiology Reviews. 2005. Vol. 29(3). P. 611–624. https://doi.org/10.1016/j.fmrre.2005.04.001
26. Comunian, R. Development and Application of Starter Cultures / R. Comunian, L. Chessa // Fermentation. 2024. Vol. 10(10). 512. https://doi.org/10.3390/fermentation10100512
27. Cisaryk, O. Skrining tehnologicheskih svoystv prirodnyh shtammov molochnokislyh bakteriy / O. Cisaryk, I. Slivka, L. Musiy // Naukoviy vіsnik L'vіvs'kogo nacіonal'nogo unіversitetu veterinarnoї medicini ta bіotehnologіy іmenі S. Z. Ґzhic'kogo. 2017. T. 19, № 80. S. 88–92. https://elibrary.ru/ztcjef
28. Galihanov, M. F. Vliyanie aktivnogo upakovochnogo materiala na kachestvo moloka / M. F. Galihanov [i dr.] // Izvestiya vysshih uchebnyh zavedeniy. Pischevaya tehnologiya. 2005. № 2–3(285–286). S. 71–73. https://elibrary.ru/mpwbnv




