VIABILITY OF YOGURT STARTER CULTURES AND BIFIDOBACTERIA IN CO-CULTURED MILK
Abstract and keywords
Abstract (English):
Probiotic yogurt as a popular functional product that promotes human health. Bifidobacteria offer new probiotic strains. However, co-cultivation may trigger antagonistic activity in microbial cultures that have to compete for nutrients. In this research, we counted Streptococcus salivarius subsp. thermophiles and Lactobacillus delbrueckii subsp. bulgaricus cultures cultivated with strains of Bifidobacterium bifidum ICIS-310 and Bifidobacterium longum ICIS-505 in milk for 21 days. The count, pH tests, and appearance description were performed on days 1, 7, 14, and 21. The co-cultivation of industrial yoghurt production microorganisms with B. bifidum ICIS-310 and B. longum ICIS-505 strains for 21 days reduced neither their count nor the sensory profile of the finished product. After further research into their metabolic interaction and immunomodulatory effect in vivo, the consortium may reveal some prospects for the functional food industry.

Keywords:
Milk, yogurt, Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Bifidobacterium bifidum, Bifidobacterium longum, microbial count, microbial co-cultivation
Text
Text (PDF): Read Download
References

1. Ponomarev, A. N. Perspektivy ispol'zovaniya antioksidantov / A. N. Ponomarev [i dr.] // Molochnaya promyshlennost'. 2008. № 6. S. 80–81. https://elibrary.ru/lpwfdd

2. Petrov, V. P. Funkcional'noe pitanie / V. P. Petrov, I. A. Magdich // Pediatr. 2017. T. 8, № S1. S. M257–M258. https://elibrary.ru/zwfwel

3. Coïsson, J. D. Euterpeoleracea juice as a functional pigment for yogurt / J. D. Coïsson [et al.] // Food Research International. 2005. Vol. 38(8–9). R. 893–897. https://doi.org/10.1016/j.foodres.2005.03.009

4. Savaiano, D. A. Yogurt, cultured fermented milk, and health: a systematic review / D. A. Savaiano, R. W. Hutkins // Nutrition Reviews. 2021. Vol. 79(5). P. 599–614. https://doi.org/10.1093/nutrit/nuaa013

5. El-Abbadi, N. H. Yogurt: role in healthy and active aging / N. H. El-Abbadi, M. C. Dao, S. N. Meydani // The American Journal of Clinical Nutrition. 2014. Vol. 99(5). P. 1263–1270. https://doi.org/10.3945/ajcn.113.073957

6. Ivanov, G. Y. Functional Yogurt fortified with Phenolic compounds extracted from Strawberry Press Residues and fermented with probiotic lactic acid Bacteria / G. Y. Ivanov, M. R. Dimitrova // Pakistan Journal of Nutrition. 2019. Vol. 18(6). P. 530–537. https://doi.org/10.3923/pjn.2019.530.537

7. Aryana, K. J. A 100-Year Review: Yogurt and other cultured dairy products / K. J. Aryana, D. W. Olson // Journal of Dairy Science. 2017. Vol. 100(12). Vol. 9987–10013. https://doi.org/10.3168/jds.2017-12981

8. Gudkov, A. V. Syrodelie: tehnologicheskie, biologicheskie i fiziko-himicheskie aspekty / A. V. Gudkov. – M.: DeLi-Print, 2003. – 800 s.

9. Agustinah, W. Yogurt making as a tool to understand the food fermentation process for nonscience participants / W. Agustinah, R. E. Warjoto, M. Canti // Journal of Microbiology and Biology Education. 2019. Vol. 20(1). https://doi.org/10.1128/jmbe.v20i1.1662

10. Li, C. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage / C. Li [et al.] // Journal of Dairy Science. 2017. Vol. 100(4). P. 2512–2525. https://doi.org/10.3168/jds.2016-11864

11. Sanders, M. E. An update on the use and investigation of probiotics in health and disease / M. E. Sanders [et al.] // Gut. 2013. Vol. 62(5). P. 787–796. https://doi.org/10.1136/gutjnl-2012-302504

12. Din, A. U. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism / A. U. Din [et al.] // The Journal of Nutritional Biochemistry. 2020. Vol. 79. 108353. https://doi.org/10.1016/j.jnutbio.2020.108353

13. Shang, J. Potential Immunomodulatory Activity of a Selected Strain Bifidobacterium bifidum H3-R2 as Evidenced in vitro and in Immunosuppressed Mice / J. Shang [et al.] // Frontiers in Microbiology. 2020. Vol. 11. https://doi.org/10.3389/fmicb.2020.02089

14. van der Hee, B. Microbial regulation of host physiology by short-chain fatty acids / B. van der Hee, J. M. Wells // Trends in Microbiology. 2021. Vol. 29(8). P. 700–712. https://doi.org/10.1016/j.tim.2021.02.001

15. Álvarez-Mercado, A. I. Bifidobacterium longum subsp. infantis CECT 7210 reduces inflammatory cytokine secretion in Caco-2 cells cultured in the presence of Escherichia coli CECT 515 / A. I. Álvarez-Mercado [et al.] // International Journal of Molecular Sciences. 2022. Vol. 23(18). 10813. https://doi.org/10.3390/ijms231810813

16. He, B.-L Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies / B. L. He [et al.] // Critical Reviews in Food Science and Nutrition. 2022. 63(26). P. 8048–8065. https://doi.org/10.1080/10408398.2022.2054934

17. Zhang, H. Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis Through Regulating Intestinal Barrier and Liver Immune Cells / H. Zhang [et al.] // Frontiers in Immunology. 2020. Vol. 11. 569104. https://doi.org/10.3389/fimmu.2020.569104

18. Grimm, V. Bifidobacteria-host interactions—an update on colonisation factors / V. Grimm, C. Westermann, C. U. Riedel // BioMed Research International. 2014. Vol. 10. 960826

19. Tojo, R. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis / R. Tojo, A. Suarez, M. G. Clemente // World Journal of Gastroenterology. 2014. Vol. 20(41). P. 15163–15176. https://doi.org/10.3748/wjg.v20.i41.15163

20. Prasanna, P. H. P. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk / P. H. P. Prasanna, A. S. Grandison, D. Charalampopoulos // International Dairy Journal. 2012. Vol. 23(1). P. 36–44. https://doi.org/10.1016/j.idairyj.2011.09.008

21. Prasanna, P. H. P. Effect of dairy-based protein sources and temperature on growth, acidification and exopolysaccharide production of Bifidobacterium strains in skim milk / P. H. P. Prasanna, A. S. Grandison, D. Charalampopoulos // Food Research International. 2012. 47(1). P. 6–12. https://doi.org/10.1016/j.foodres.2012.01.004

22. Bandiera, N. S. Viability of probiotic Lactobacillus casei in yoghurt: defining the best processing step to its addition / N. S. Bandiera [et al.] // Archivos Latinoamericanos de Nutrición. 2013. Vol. 63(1). https://alanrevista.org/ediciones/2013/1/art-8

23. Gryaznova, M. V. Dinamika izmeneniya bakterial'nogo sostava molochnoy osnovy v processe fermentacii / M. V. Gryaznova [i dr.] // Tehnika i tehnologiya pischevyh proizvodstv. 2023. T. 53, № 3. S. 554–564. https://doi.org/10.21603/2074-9414-2023-3-2456; https://elibrary.ru/sojitn

24. Perunova, N. B. Probioticheskie svoystva kompozicii indigennyh shtammov Bifidobacterium bifidum ICIS-310 i Bifidobacterium longum ICIS-505 v usloviyah in vitro / N. B. Perunova [i dr.] // Biopreparaty. Profilaktika, diagnostika, lechenie. 2025. T. 25, № 2. S. 203–213. https://doi.org/10.30895/2221-996X-2025-565; https://elibrary.ru/hhzyvw

25. Chapman, C. M. C. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens / C. M. C. Chapman, G. R. Gibson, I. Rowland // Anaerobe. 2012. Vol. 18(4). P. 405–413. https://doi.org/10.1016/j.anaerobe.2012.05.004

26. Warda, A. K. A Postbiotic Consisting of Heat-Treated Lactobacilli Has a Bifidogenic Effect in Pure Culture and in Human Fermented Fecal Communities / A. K. Warda [et al.] // Applied and Environmental Microbiology. 2021. Vol. 87(8). e02459-20. https://doi.org/10.1128/aem.02459-20

27. Markakiou, S. Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications / S. Markakiou, P. Gaspar, E. Johansen [et al.] // Current Opinion in Biotechnology. 2020. Vol. 61. P. 142–152. https://doi.org/10.1016/j.copbio.2019.12.019

28. Xiao, J. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers / J. Xiao [et al.] // Journal of Dairy Science. 2003. Vol. 86(7). P. 2452–2461. https://doi.org/10.3168/jds.S0022-0302(03)73839-9

29. Nogacka, A. M. 2-Fucosyllactose Metabolism by Bifidobacteria Promotes Lactobacilli Growth in Co-Culture / A. M. Nogacka [et al.] // Microorganisms. 2023. Vol. 11(11). 2659. https://doi.org/10.3390/microorganisms11112659

30. Jurášková, D. Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties / D. Jurášková, S. C. Ribeiro, C. C. G. Silva // Foods. 2022. Vol. 11(2). P. 156. https://doi.org/10.3390/foods11020156

Login or Create
* Forgot password?